
Reverse Engineering a
Cryptographic RFID Tag
Karsten Nohl, David Evans, Starbug Plötz,
Henrik Plötz

Presented by Avani Wildani

Radio Frequency
IDentification

All RFID tags are essentially radio transponders with
memory.

Can be either passive (no power) or use relfective
power (modulated backscatter) with a battery.

Two components: IC and antenna

Where are RFIDs used?

UCSC (and most corporate) ID Cards

Passports

Clothing/Books/CDs (EPC tags)

BART Passes

Animal Tracking

Paying for drinks if you’re a VIP (!)

Image: WalMart EPC RFID tag; courtesy of Wikipedia

RFID Errata

Smallest tag is 150 x 150 x 7.5 microns

Can store 38 digit numbers using 128-bit ROM.

Initiative to reduce per-tag price to 5¥, or about a
nickel.

Typical frequencies are 0.125–0.1342, 0.140–0.1485,
13.56, and 868–928 Mhz.

Optical “RF”ID uses 333 THz. It also can’t be read
without line of sight, which makes it slightly less
vulnerable.

Image courtesy of http://www.pinktentacle.com/tag/hitachi/

Security Issues

RFID manufacturers love “Security through Obscurity”

Many RFID tags send and receive data in clear text,
leaving themselves open to man in the middle attacks
(more later)

Cost of reconstructing cipher from the hardware
implementation is less than manufacturers think.

MIFARE Classic RFID Tag

Primarily for ticketing, transportation, and access
control / identification.

Widespread: Costs under .5€ in small quantities.

1sq mm: 1/4 for 1K flash, 1/4 for antenna, 1/2 for logic
+ cryptography

Crypto functions make up 400 2-NAND gate
equivalents, whereas small AES takes 3400: very
simplistic.

MIFARE Cipher

Uses a 48-bit symmetric stream cipher.

This is already crackable: remember how easy it was
to crack 56-bit DES.

Data is divided into two sections with different access
rights and correspondingly different keys.

To ease key-distribution, different tags in a system
frequently have the same read key, leaving it open to
impersonation.

Physical Reverse
Engineering

Step 1: Dissolve cards with acetone to get access to
the chip.

Step 1.5: Place chip in a medium to limit tilting

Step 2: Polish off micrometer-thin layers of the chip
using .04µm thick sandpaper or polishing solution.

Step 3: Image all 6 layers (transistors are on the
bottom).

Some tilting is unavoidable. Use a tool to average
several images.

Physical Reverse
Engineering

Step 4: There are several thousand logic gates on a
chip, but only about 70 types. Identify these gates.

Step 5: Use MATLAB image processing to
automatically identify these gates given the templates
you’ve identified.

Use normalized cross-correlation to overcome the
variation in color/brightness across your chip images.

This is <10 minutes for the entire chip.

Physical Reverse
Engineering

Image from Nohl et al., 2008

Physical Reverse
Engineering

Now that you know how the gates are laid out, you can
find the cryptographic area of the chip by looking for a
48+ bit register and a set of XOR gates.

RNG is an area with output but no input.

Examine the area by hand, but don’t over-do it: you
can fill in holes in your knowledge by analyzing the
protocol.

Protocol Analysis

Use the OpenPCD Open Source RFID Reader to poke
the chip. This lets you control timing, which is
important to discovering vulnerabilities.

First test: Are the key and the (known) tag ID shifted
together sequentially? They tried shifted combinations
and found many worked.

This also told them the structure of the 48-bit linear
shift register that holds the cipher.

Entirely deterministic register that just cycles
through a set of values by XOR-ing.

Protocol Analysis

Cipher contains no non-linearity. This means
everything is easy to derive once you know something.

Recap: Authentication protocol is taking a shared
secret key and a unique ID tag as input and using
those to establish a shared session key for the stream
cipher.

Random Number
Generation

Random numbers generated by a 16-bit linear
feedback shift register initialized to a constant value.

This means that the “random” number is purely a
function of the amount of time the tag has been
powered up!

The number is also very short. Even if you can’t control
the timing, you only have 65,535 possibilities.

Vulnerabilities
Key is small enough to brute force.

Takes about 50 minutes on 64 FPGAs.

 Since you control “random” numbers and know the
shifting patterns, you can create a codebook of
recorded authentication outputs and the corresponding
keys. Rainbow tables let you trade computation for
space and store information for all keys.

Each session key/ID pair has exactly one
corresponding secret key and all shifts are linear: Thus,
if you compute codebook for one secret key, you can
use it anywhere...

Summary

Attacker scans public RFID ID.

Use a reader to record just two timed challenge-
response interactions with the card.

Use codebook to compute the key.

Read all data on the card in the clear.

Game over.

Fixing MIFARE Classic
Better RNG: exploit the fact that memory cells are
initially “random.” Start the cipher area in a random
state and evolve using feedback loop until the random
number is needed.

This also saves space since you don’t need a
separate RNG: Use this to make a bigger cipher.

Break the key-ID mapping by using a non-linear
feedback on one of the two for the register shift.

Make the output function non-linear to protect against
statistical attacks.

General Defense

Don’t rely on secrets! Use something like 3-DES and
implement it properly.

Use fraud detection to detect unusual access patterns.

Even worse for privacy than straight RFID.

Obfuscate at least the cipher part of your physical
circuit design.

Just in case you feel safe...

Many large companies don’t bother with encryption at
all.

For access-passes, you can just grab and replicate the
authentication code from a correct RFID: This is known
as a relay attack.

Passport cards and drivers’ licenses can be easily
cloned as well as having the data stolen off them.

You can download apps off the Internet to “back-up”
any actual modern US passport.

Further Reading

http://www.dexlab.nl/ (Passport Backup)

http://hackaday.com/2009/02/16/shmoocon-2009-
chris-pagets-rfid-cloning-talk/ (Great talk!)

http://hackaday.com/2009/02/02/mobile-rfid-scanning/
(Passport RFID Cards)

http://www.schneier.com/blog/

Questions?

Amal Graafstra’s hands. Image courtesy of http://www.amal.net/rfid.html

